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Abstract

Building on the literature on systemic risk and financial contagion, the pa-
per introduces estimated network linkages into an early-warning model to pre-
dict bank distress among European banks. We use multivariate extreme value
theory to estimate equity-based tail-dependence networks, whose links proxy
for the markets’ view of bank interconnectedness in case of elevated financial
stress. The paper finds that early warning models including estimated tail
dependencies consistently outperform bank-specific benchmark models with-
out networks. The results are robust to variation in model specification and
also hold in relation to simpler benchmarks of contagion. Generally, this paper
gives direct support for measures of interconnectedness in early-warning mod-
els, and moves toward a unified representation of cyclical and cross-sectional
dimensions of systemic risk.
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1 Introduction

The global financial crisis has stimulated research on deriving tools for monitoring
systemic risk and contagion risk. This is usually approached from two perspec-
tives: the structural and cyclical dimensions of systemic risk. While early-warning
models tackle the cyclical dimension and build-up of systemic risk, various net-
work approaches address structural or cross-sectional aspects related to an intercon-
nected financial system. This paper contributes to the field by combining a model
of bank distress with bank networks of interconnectedness, in order to account for
the propensity of distress to spread in early-warning exercises.

We address systemic risk surveillance by introducing bank networks into an early-
warning model to predict bank distress. With a two-step estimation, we rely on the
assumption that the vulnerability of one bank is also defined by the vulnerability
of its neighbors. This paper provides a general-purpose framework that enables
combining any type of networks with any type of distress models. While previous
literature on bank-level early-warning models have ignored potential network effects
by focusing solely on individual bank distress, the key contribution of the paper
is that it explicitly combines potential contagion effects through tail dependencies
in a bank failure model. The network perspective is modeled with the multivariate
extreme value theory approach of Poon et al. (2004) to estimate tail-dependence net-
works based on equity prices, which proxy markets’ view of bank interconnectedness
via direct bilateral or common exposures. Despite being estimated networks, they
are not necessarily inferior to real exposure data, as the market’s view also accounts
for more indirect sources of interdependence, such as common and correlated expo-
sures and behavioral aspects. These networks are combined with the early-warning
model of Betz et al. (2014) using bank-specific and country-level indicators to pro-
vide information on the potential spread of distress through interconnectedness in
the banking system. We apply our approach in a European setting with 171 listed
banks over 1999Q1–2012Q3.

The paper is related to several strands of literature. First, the sole assumption of
an interconnected financial system relates to the theoretical literature on (indirect)
contagion (e.g., Freixas et al. (2000), Cifuentes et al. (2005), Brunnermeier (2008),
Brunnermeier and Pedersen (2009), Tirole (2011)). More concretely, our approach
to estimating tail-dependence networks relates mainly to the literature on multi-
variate extreme value theory (e.g., Poon et al. (2004)), as well as more generally
to the literature on financial contagion through extreme value theory (e.g., Bae et
al. (2003), Hartmann et al. (2004), and Gropp and Moerman (2004), Longin and
Solnik (2001), Hartmann et al. (2005), and Gropp et al. (2009)). Beyond this, the
literature has obviously also proposed a number of other approaches to estimat-
ing tail-dependence networks, such as Diebold and Yılmaz (2014), Hautsch et al.
(2014a), Hautsch et al. (2014b), and Betz et al. (2014). On a more general note,
the literature has its basis in network structures and contagion as described in a
seminal paper by Allen and Gale (2000), as well as in Battiston et al. (2012a), Gai
et al. (2011) and Battiston et al. (2012b)), and also surveyed in Nier et al. (2007)
and Allen and Babus (2009). Moreover, at the bank level, a directly related study
is Hale et al. (2014), in which they show the impact of crises through direct and
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indirect exposures on bank profitability.
A more related strand of literature has focused on network effects in early-

warning models. While being few in number, previous works have accounted for
the interconnectedness in assessing and predicting systemic risks. In particular, Oet
et al. (2013) used indicators of the cross-sectional dimension of systemic risk through
connectivity indicators, such as CoVaR, in order to signal banking crises, Minoiu et
al. (2013) assess the link between overall cross-country financial connectedness and
vulnerability to banking crises, and Peltonen et al. (2014) analyze the impact of both
cross-country and domestic interconnectedness in terms of four different financial in-
struments as vulnerability to banking crises. Yet, in relation to the present paper,
these are all at the country level and compute only overall interconnectedness as a
vulnerability rather than allowing for distress pass through in networks. In contrast,
this paper builds upon and extends the bank failure model by Betz et al. (2014),
by complementing it with the estimated tail-dependence network. Beyond country
vulnerability indicators, it also includes a country-specific fixed effect to proxy for
cross-country heterogeneity like supervisory standards.

The paper finds that models including estimated tail dependencies consistently
outperform the benchmark model, which is based solely on bank-specific and country-
specific data and does not account for any type of vulnerability transmission. More-
over, country-specific variables cover both sector level and macro-financial variables.
Our results are robust to a wide range of variation in model specification, such as
different network estimations, policymaker’s preferences, forecast horizons and selec-
tions of explanatory factors. For assessing the out-of-sample performance of different
early-warning models we use signal evaluation concepts for classification problems,
which are wide-spread in machine learning and statistics. For comparison purposes,
we construct contagion variables that are either based on estimated network linkages
or location of banks’ incorporation (country-level contagion). For the in-sample es-
timations, all country and network contagion coefficients are statistically significant
and have the expected sign: exposure to contagion from vulnerable neighbours in-
creases the vulnerability probabilities of banks. The network contagion coefficients
also have the highest magnitude when compared to the country contagion ones. In
out-of-sample evaluations, the results of the network-based contagion outperform
those of simpler contagion benchmarks, such as geographically neighboring banks.
Even though the magnitude of the improvement in out-of-sample performance for
the two models with network contagion variables is modest, it is statistically signif-
icant. This improvement comes from better performance both in terms of missing
less crises (reduced false-negative rate) and giving fewer false signals (reduced false-
positive rate). When the contagion variables are built using the location of banks’
incorporation, there is almost no change in the results compared to the benchmark
case, where no contagion is assumed.

These results give a direct support for including measures of interconnectedness
and proxies for contagion when building early-warning models. From a policy per-
spective, they emphasize the need for macro-prudential perspective to complement
micro-prudential analysis of individual bank’s risk drivers to monitor systemic risk
and analyze contagion risk. It is not only enough to either identify vulnerabilities
due to linkages among entities or individual distress probabilities, but clearly useful
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to combine this information. In particular, this provides early steps toward a unified
representation of cyclical and cross-sectional dimensions of systemic risk.

The remainder of the paper is organised as follows: Section 2 describes the mod-
eling framework and Section 3 the data used in the analysis. Section 4 presents the
results and also discusses their robustness, while Section 5 concludes. The Appendix
includes summary statistics and additional robustness tests. Further, the paper in-
cludes a supplementary web-based network visualization: http://vis.risklab.fi/#/tailnet
(for a further discussion of the VisRisk platform see Sarlin (2014)).

2 Modelling framework

This section presents a modeling framework for combining early-warning models
with bank networks. We estimate individual probabilities of bank vulnerability and
complement them with network linkages that account for possible transmission of
vulnerabilities between banks. The rationale behind the simultaneous use of early-
warning models and networks is that this allows for capturing the vulnerabilities that
descend directly from each entity itself as well as indirectly from other interlinked
entities. Although this paper uses market data to estimate how the realisation of
negative shocks for any bank’s returns may depend on the realisation of negative
shocks of other banks’ returns, it is worth noting that this is a general-purpose
framework that is independent of the techniques used for deriving the probabilities
and the network linkages. In addition to tail-dependence networks, this section
presents the approaches used for deriving and evaluating early-warning models, as
well as their combination with network linkages.

2.1 Tail-dependence networks

Given that data on interbank lending and exposures in Europe is not publicly avail-
able, we use market data to estimate how the realisation of negative shocks for any
bank i’s returns may depend on the realisation of negative shocks of other banks’
returns. We thus use an extrema dependence measure that is based on the prob-
ability of having extreme negative values that occur simultaneously for any two
banks’ return series. This effectively amounts to augmenting the individual bank-
vulnerability probabilities with conditional probabilities that account for possible
simultaneous vulnerabilities among banks. Despite being estimated networks, they
are not necessarily inferior to real exposure data. Even if the data on real exposures
would be available, it would only offer a partial view on contagion channels, while
the market’s view also accounts for more indirect sources of interdependence, such
as common and correlated exposures and behavioral aspects. Moreover, markets are
forward-looking, which is important for early-warning models.

The multivariate extreme-value approach used to estimate the dependence struc-
ture among banks’ returns is based on modeling the joint-tail distribution of pairs
of banks’ returns, using the methodology introduced by Poon et al. (2004). Multi-
variate extreme value theory has proven to be an efficient way to study dependence
structures that emerge rarely, such as systemic events. In practice, various fields like
portfolio management, allocation decisions, risk management, and hedging largely
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use statistical approaches that account for more complex dependence structures than
simple correlations. Poon et al. (2004) show that dependence measures based on ex-
treme value theory lead to better portfolio risk assessment compared to traditional
dependence measures.

The use of multivariate extreme value theory to estimate interbank exposures
and contagion risk is further justified by the need of capturing bank interdependen-
cies beyond what can be expected in normal times. Moreover, by filtering stock
returns of exogenous factors and time-varying volatility, the estimated interdepen-
dencies are in excess of what can be explained by economic fundamentals. Hart-
mann et al. (2005) also identify contagion risk among banks with extreme negative
co-movements between individual bank stocks, such that the extreme events cor-
respond to crisis situations and are severe enough to always be of importance for
policymakers.

In order to account for possible common factors that drive banks’ returns, we
start by regressing each bank’s demeaned return series, denoted ri,t, on its own
lag and the European banking sector and country-specific demeaned return indices.
The dependence structure between banks will be based on the innovations of banks’
returns, beyond what we could expect from aggregate factors and after filtering for
possible heteroscedasticity in the error terms.

The following specification allows us to account for external and common factors’
effects on banks’ i demeaned returns:

ri,t = βii,t ∗ ri,t−1 + βC
i

i,t ∗ rCi,t + βEi,t ∗ rE,t + εit,

where rE,t represents the demeaned European banking sector return index, rCi,t

represents country’s i demeaned return index and εit is the error term. The time-
varying parameters of the model are estimated using the Dynamic Conditional Beta
approach proposed by Engle (2012), which uses time-varying variance-covariance
matrices in the ordinary least squares estimation of the coefficients.

Next, our interest shifts to the error terms εit, which can hide non-linear de-
pendencies in the cross-section. Given that heteroscedasticity is a source of tail
dependence, we apply univariate asymmetric GARCH(1,1) models (introduced by
Glosten et al. (1993)) to the error terms. The asymptotic dependence measure
should only account for return co-crashes that are not triggered by common factors
or increased volatility. The asymmetric GARCH model also accounts for the em-
pirical observation that negative returns tend to be followed by larger increases in
volatility than equally large positive returns:

εi,t = σi,tzi,t,

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1 + γiε

2
i,t−11εi,t≤0,

zt ∼ f(zi,t; νi, λi).

The innovation process zi,t is assumed to have a univariate skewed t-distribution,
with νi degrees of freedom and λi the asymmetry parameter, which is known to suit
well the fat-tailed conditional distribution of stock returns. In order to focus purely
on the dependence between the innovation series, it is suitable to transform the data
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such that all series have a common marginal distribution. This allows us to remove
the possible effects of marginal aspects and assure that the differences in joint-
tail probabilities are solely due to differences in the dependence structure. Given
the extensively researched fat-tailed distribution of asset returns, we transform the
innovation series (zi,zj) to Fréchet marginals (S,T) as follows:

S = −1/logFzi(zi) and T = −1/logFzj(zj),

where Fzi and Fzj are the respective marginal distributions for zi and zj.
For determining whether any two banks i and j are linked by some dependence

structure, we use the transformed innovations series to compute the extremal depen-
dence measure χ̄ described by Poon et al. (2004). This measure was developed as
a complement to the asymptotic dependence measure χ, which indicates the degree
of extremal dependence for any two variables S and T and is defined as:

χ = lim
s→∞

Pr(T > s|S > s)

= lim
s→∞

Pr(T > s, S > s)

Pr(S > s)
.

with 0 ≤ χ ≥ 1. For χ > 0, the two variables S and T are asymptotically
dependent, for χ = 1 they are perfectly dependent and for χ = 0 they are asymp-
totically independent. The complementary measure χ̄ 1 indicates the rate at which
Pr(T > s|S > s) approaches zero. Coles et al. (1999) defined the measure χ̄ as:

χ̄ = lim
s→∞

2logPr(S > s)

logPr(S > s, T > s)
− 1,

where −1 < χ̄ ≤ 1. For perfect dependence between two variables S and T , χ̄=1
and for perfect independence χ̄=0.

Therefore, in order to conclude on the dependence structure between two inno-
vation series, we need to test if χ̄ = 1. We will interpret that there is a link between
two banks if the measure χ̄ applied to their innovation series in not statistically
different from one, meaning that we cannot reject the null hypothesis that the two
innovation series may be perfectly dependent. The nonparametric estimation for χ̄
was developed by Ledford and Tawn (1996) and is based on the tail index η, also
called the shape parameter, of any heavy-tail variable Z = min(S, T ) 2. It was
established that under weak conditions

χ̄ = 2η − 1.

Thus, for estimating the dependence structure between two variables S and T ,
we need to start by estimating the tail index of the variable Z = min(S, T ). This

1The asymptotic independence measure χ̄ was developed by Ledford and Tawn (1996).
2Ledford and Tawn (1996) argue that the bivariate dependence structure is a regular varying

function under fairly general conditions
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follows from

Pr(Z > z) = Pr(min(S, T ) > z) = Pr(S > z, T > z).

The tail index parameter η is estimated using a modified version of Hill’s es-
timator (Hill, 1975) developed by Huisman et al. (2001) for small samples. The
modified estimator is based on a weighted average of Hill’s estimators for different
tail-threshold values. We choose to use the modified tail-index because it provides
accurate estimates when the exact tail threshold of the innovations’ distribution is
not known. For the tail-threshold k of any innovation series of length n, we gen-
erally apply an empirically driven rule proposed by Loretan and Phillips (1994) of
k = n2/3/log(log(n)). Moreover, we will compute the variance of the ˆ̄χ estimator as:

var( ˆ̄χ) = ( ˆ̄χ+ 1)2/k.

We interpret that there is a link between two banks if the measure χ̄ applied to
their innovation series is less than two standard deviations away from one, which
also corresponds to η = 1 and the innovation series being asymptotically dependent.
To this end, we use the ˆ̄χ and var( ˆ̄χ) estimators to compute the standard z-scores
of χ̄, which effectively indicate the distance in units of standard deviation between
the raw dependence measure and one. The network used in the early-warning model
is thus based on a matrix with binary links that are constructed by comparing the
standard z-score of the dependence measure between any two banks to one.

The data used for constructing the European financial network is composed of
market data covering daily stock prices for 171 listed European banks, the European
banking sector’s equity price index and country-level equity price indices. Banks’
stock prices were taken from Bloomberg while the equity price indices were taken
from Thomson Reuters Datastream; all series cover the period from January 1999 to
April 2014. We then extract log-returns from the price series and use their demeaned
values to perform the above estimation. The banking network is estimated in an
expanding-window fashion for each quarter in the period 2007Q1 - 2013Q2. The
network for the first quarter of 2007 is estimated using the data from January 1999
to December 2006, the network for the second quarter of 2007 is based on the period
January 1999 to Mars 2007, and so on.

Finally, Figure 1 shows an example of the estimated tail-dependence network
for all banks in the sample at 2008Q4, i.e. right after the collapse of the Lehman
Brothers and at the start of the Global Financial Crisis. In the figure the nodes
represent banks and links are based on tail dependencies. As can be seen from
the figure, the estimated tail-dependence networks are dense and one can observe
a core-periphery structure commonly found in the literature analyzing interbank
contagion. The tail-dependence network can provide the policymaker with addi-
tional information about the interconnectedness of a bank either through its direct
bilateral exposures or through common or similar exposures. Thus, it can provide
information of potentially vulnerable banks following a bank’s failure.
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2.2 Signal evaluation framework

Prior to linking the above described networks to early-warning models, we need to
understand the objective function of these types of models. The problem of signaling
vulnerable banks can be summarized to classifying the banks into two categories.
This paper uses a loss function that accounts for type I and type II errors that arise
in standard classification problems, and a policymaker’s preferences for the errors.
The loss function and so-called Usefulness measures make use of the specifications
described in Sarlin (2013). In this framework, a model issues a warning signal
whenever its estimated probability for a specific bank in a certain period exceeds
a threshold λ ∈ [0, 1]. In this way, model predictions for each observation j are
transformed into binary predictions Pj that are equal to 1 if the respective thresholds
are exceeded for this observation and 0 otherwise. Predictive abilities of the variables
and the models can then be evaluated by comparing the signals issued by the model
to the actual outcome Cj for each observation.3 Each observation is assigned to the
contingency matrix depicted in Table 1.

Table 1: Contingency matrix

Actual class Cj

1 0

Predicted class Pj

1
True positive False positive

(TP) (FP)

0
False negative True negative

(FN) (TN)
The table shows the relationship between model prediction and actual outcomes. Observations

are classified into those where the indicator issues a warning that is indeed followed by a banking
crises twelve to seven quarters ahead (TP), those where the indicator issues a warning that is not
followed by a crisis (FP), those where the indicator issues no warning and there is no crises seven
to twelve quarters ahead (TN), and those where the indicator issues no warning although there is

a crisis coming (FN).

In order to obtain the optimal threshold λ one needs to define a policymaker’s
preferences between type I errors (missing a crisis, T1(λ) = FN/(TP +FN) ∈ [0, 1])
and type II errors (issuing a false alarm, T2(λ) = FP/(FP + TN) ∈ [0, 1]). This
is done with a loss function that depends on the two types of errors as well as
the policymaker’s relative preference for either type. The optimal threshold is then
chosen by minimizing the loss function. Taking into account the relative frequencies
of crises P1 = P (Cj = 1) and tranquil periods P2 = P (Cj = 0), the loss function is
defined as follows:4

L(µ, λ) = µP1T1(λ) + (1− µ)P2T2(λ),

3Cj is equal to 1 if a bank failure occurs up to eight quarters ahead of the respective period
and 0 otherwise.

4As pointed out by Sarlin (2013), policymakers should be concerned about the absolute num-
ber of misclassification rather than the share of misclassifications in relation to class size (i.e.,
unweighted type I and type II errors). Therefore, a failure to account for the relative frequency of
crisis episodes and tranquil periods results in a bias on the weighting of type I and type II errors
in the loss function.
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where µ ∈ [0, 1] denotes the policymakers’ relative preference between type I
and type II errors. A µ larger than 0.5 indicates that the policymaker is more
averse against missing a crisis than against issuing a false alarm, which is a realistic
assumption if one assumes that a signal leads to an internal investigation. With
the loss function L(µ, λ), we can assess the usefulness of a model in two ways.
First, following Sarlin (2013), the absolute usefulness is also defined to account for
unconditional probablities as follows:

Ua = min(µP1, (1− µ)P2)− L(µ, λ).

Note that Ua computes the extent to which having the model is better than
having no model. This is because a policymaker can always achieve a loss of
min(µP1, (1 − µ)P2) by either always issuing a signal (i.e., T1(λ) = 0) or never
issuing a signal (i.e., T2(λ) = 0). The fact that P1 is significantly smaller than P2 in
our sample (i.e., few vulnerable states) implies that a policymaker needs to be more
concerned about vulnerable states than the avoidance of false alarms. Otherwise,
with a suboptimal performing model, it would easily pay off for the policymaker to
never issue a signal.

A second measure, the relative usefulness Ur, is computed as follows (see Sarlin
(2013)):

Ur =
Ua

min(µP1, (1− µ)P2)
.

The relative usefulness Ur reports Ua as a percentage of the usefulness that a
policymaker would gain from a perfectly performing model.5 The relative usefulness
is our preferred performance indicator as it allows the comparison of models for
policymakers with different values for the preference parameter µ.

In addition to assessing the relative and absolute usefulness of a model, we also
employ receiver operating characteristics (ROC) curves and the area under the ROC
curve (AUC). These are also viable measures for comparing performance of early-
warning models, particularly when the policymakers’ preferences for type I and
II errors are not known. While the Usefulness measure shows performance at one
specific point of the ROC curve, the AUC measures the performance of models for all
preferences µ ∈ [0, 1]. More specifically, the ROC curve shows the trade-off between
the benefits and costs of a certain threshold λ. When two models are compared, the
better model has a higher benefit (TP rate (TPR) on the vertical axis) at the same
cost (FP rate (FPR) on the horizontal axis).6 Thus, as each FP rate is associated
with a threshold, the measure shows performance over all thresholds, and hence
all preference parameters µ. In this paper, the size of the AUC is computed using
trapezoidal approximations. The AUC measures the probability that a randomly

5A perfectly performing indicator would achieve T1 = T2 = 0, implying L = 0. Consequently,
Ua would reduce to min(µP1, (1− µ)P2).

6The TPR (also called sensitivity) gives the ratio of periods where the model correctly issues a
warning to all periods where a warning should have been issued, formally TPR = TP/(TP +FN).
The FPR (also called specificity) gives the ratio of periods where the model wrongly issues a signal
to all periods where no signal should have been issued, formally FPR = FP/(FP +TN). An ideal
model would achieve a TPR of one (no missed crises) and a FPR of zero (no false alarms).
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chosen vulnerable state is ranked higher than a tranquil period. A perfect ranking
has an AUROC equal to 1, whereas a coin toss has an expected AUC of 0.5.

2.3 Logit analysis and recursive modeling

The next task is to connect the above described networks and loss functions to
bank distress through approaches for deriving early-warning models. In order to
predict bank distress events and to assess the predictive abilities of tail dependence
and other contagion measures, we estimate a logit model using pooled data of the
following form:

Prob(yit = 1) =
eX

′
itβ

1 + eX
′
itβ
.

where Prob(yit = 1) denotes the probability that bank i is in a vulnerable state (i.e.,
preceding distress events in quarter t). Thus, rather than using lagged explanatory
variables, the dependent variable (denoting the vulnerable state) is defined as 1
eight quarters prior to distress events and 0 otherwise. Following the estimation
strategy in Betz et al. (2014), the early-warning model augmented with country
fixed effects is a recursive logit model that makes a prediction at each quarter t =
1, 2, . . . , T with an estimation sample that grows in an expanding-window fashion.
As independent variables, the vector Xit includes country fixed effects and measures
of tail dependence and other contagion proxies beyond bank-specific, banking sector
and macro-financial variables (see Sections 2.3 and 3 for a precise definition of the
variables).

The iterative estimations of the early-warning model imply that bank vulner-
abilities are predicted by re-estimating the model at each quarter. This way, all
available information is used before making any prediction. The data sample is split
into an in-sample period, used to estimate the early-warning model, and into an
out-of-sample period, used to make predictions and assess the model’s performance.
The in-sample period initially covers 1999Q1-2006Q4 and increases by one quarter
at each iteration. After each iteration we extract bank vulnerability predictions that
will amount in the end to the out-of-sample period 2007Q1-2012Q3.

In order to test the usefulness of the estimated tail dependence to predict bank
failures and to introduce contagion-related information, the early-warning model is
based on two successive estimations that use the in-sample data for each iteration.
The first estimation uses the benchmark model specification to obtain vulnerability
signals for each individual bank, which are further used to construct contagion vari-
ables. These contagion variables are either based on estimated network linkages or
location of banks’ incorporation. For the second estimation we add the contagion
variables to the benchmark model and re-estimate the model to obtain final vul-
nerability probabilities, set an optimal threshold, and make the final out-of-sample
predictions. In this way, we account for the possible transmission of vulnerabilities
between banks that either are linked in the network or because they are incorporated
in the same country.

We construct the following variables to introduce network effects and contagion-
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related information to the early-warning model:7

• “Network Dummy”: a dummy variable that indicates for each bank whether
there are any vulnerable banks to which it is estimated to be connected
(“neighbours”) through tail dependence.

• “Network Sum”: a variable that counts how many vulnerable neighbouring
banks the bank has in its estimated tail-dependence network.

• “Country Dummy”: a dummy variable that indicates for each bank whether
there are other banks being signaled as vulnerable in the same country.

• “Country Share”: the share of vulnerable banks of total banks in the respective
country.

The algorithm is described below. Starting from quarter 2007Q1, we conduct
the following iterative exercise for each quarter q in the out-of sample window:

1. Estimate the benchmark early-warning model on the in-sample period, using
all available information up to quarter q:

pi = Pr(yit = 1) = Λ(βXit),

where Λ(βXit) is the benchmark logit model that uses only bank-specific and
country-level indicators Xit, pi represent distress probabilities for bank i, and
yit is the distress signal.

2. Collect the distress probabilities p̂i for the in-sample period, compute the
Usefulness measure for all probability thresholds λ and choose the threshold
that maximizes in-sample Usefulness. The initial distress signals are given by:

yit =

{
1 if p̂i > λ

0 otherwise

3. Collect signals from the previous estimation and use a network to identify the
neighbours of vulnerable banks. Create contagion variables that indicate for
each bank whether it has any or the number of vulnerable neighbours in a
specific quarter. Introduce a contagion variable in the benchmark model and
re-estimate it using the same in-sample period:

p∗i = Pr(yit = 1) = Λ(βXit + γNCit),

where Λ(βXit + γNCit) is the logit model augmented with the contagion vari-
able NCit and p∗i are the updated distress probabilities.

4. Collect the new distress probabilities p̂∗i from the model and choose the new
optimal threshold λ∗ with respect to Usefulness.

7The labels refer to the variable names in the estimation tables.
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5. With the model from Step 4, estimate distress probabilities for quarter q and
use the threshold λ∗ to signal vulnerable banks. The final distress signals are
given by:

y∗it =

{
1 if p̂∗i > λ∗

0 otherwise

After the full iteration, we compute the performance of the model based on the
out-of-sample signals by comparing the predictions delivered by the model to the
historically observed bank distress events. The performance is assessed by the rela-
tive usefulness Ur measure as well as the Receiver Operating Characteristic (ROC)
and the Area Under the Curve (AUC) as explained in Section 2.2.

3 Distress events and indicators

This section describes the data sources and variable definitions and is divided into
two sub-sections. We first describe the definition of bank distress events, and then
cover the used bank-specific risk drivers and country-level vulnerability indicators.
The dataset covers 171 listed European banks over the period 1999Q1–2012Q3. To
support comparability, we follow the data collection procedure in Betz et al. (2014),
but update coverage and limit our focus on only listed banks.

3.1 Bank distress events

The distress events used in this paper descend from the unique database collected
in Betz et al. (2014). As European banks have experienced only few direct bank
failures, the events also include state interventions and forced mergers to represent
bank distress.

The first type of events include bankruptcies, liquidations and defaults, with
the aim of capturing direct bank failures. Bankruptcies occur if the net worth of
a bank falls below the country-specific guidelines, whereas liquidations occur if a
bank is sold according to the guidelines of the liquidator and the shareholders do
not receive full payment for their ownership. Defaults occur if a bank has failed
to pay interest or principal on at least one financial obligation beyond any grace
period specified by the terms or if a bank completes a distressed exchange. The
data on bankruptcies and liquidations are collected from Bankscope, and defaults
from Moody’s and Fitch. The distress events are defined to start when a failure is
announced and end at the time of the de facto failure.

The second type of events comprise the use of state support to identify banks
in distress. A bank is in distress if it receives a capital injection by the state or
participates in asset relief programmes (i.e., asset protection or asset guarantees). It
is worth to note that this includes only assistance on the asset side, whereas liquidity
support or guarantees on banks’ liabilities are not used for defining distressed banks.
The state interventions are sourced from the European Commission, as well as data
collected by the authors from market sources (Reuters and Bloomberg) for cross-
checking. The start dates of the events refer to the announcement of the state aid
and the end date to the execution of the state support programme.
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The third type of events are forced mergers, which capture private sector so-
lutions to bank distress. Distressed mergers are defined to occur if (i) a parent
receives state aid within 12 months after a merger or (ii) if a merged entity exhibits
a negative coverage ratio within 12 months before the merger. The coverage ratio
is computed using data from Bloomberg (ratio of capital equity and loan reserves
minus non-performing loans to total assets , as in e.g. González-Hermosillo (1999)),
whereas data on mergers are obtained from Bankscope. The events identified using
these definitions of distressed mergers have also been cross-checked using market
sources (Reuters and Bloomberg). The dates for these two types of distress events
are defined as follows, respectively: (i) the start date is when the merger occurs and
the end date when the parent bank receives state aid, and (ii) the start date is when
the coverage ratio falls below 0 (within 12 months before the merger) and the end
date when the merger occurs.

Table 2: Number of distress events per category

Total distress events 172

Defaults, liquidations and bankruptcies 13
State interventions: 130
- asset protection 15
- capital injection 96
- guarantee loans 23
Distressed-merger: 40
- state aid 9
- coverage ratio 34

Table 2 summarizes the frequency of distress events by type. From the table,
we can observe that only 13 of the distress events are direct failures, while there are
130 state interventions and 40 distressed mergers. In total, there are 172 distress
events at the bank-quarter level. This figure is smaller than the sum of events
across categories as they are not mutually exclusive. Table 3 shows the number of
banks and distress events by country. As this paper focuses on vulnerable states, or
pre-distress events, it is worth noting that we transform in the benchmark case the
distress events into a binary pre-distress variable, which is defined to take the value
one during the eight quarters prior to the distress events, and otherwise zero.

3.2 Bank-specific and country-level indicators

We use indicators from three categories to capture various aspects of a bank vulner-
ability: bank-specific, banking sector and macro-financial indicators. To measure
bank-specific vulnerabilities, the first category includes indicators based upon banks’
income statements and balance sheets. As is common in the literature (e.g. Flan-
nery (1998); González-Hermosillo (1999); Poghosyan and Čihak (2011)), we use
indicators covering all dimensions in the CAMELS rating system, which have been
constructed using Bloomberg data. In contrast to studies like Agarwal and Taffler
(2008), we do not consider market-based indicators because we aim at predicting
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Table 3: Number of banks and distress events by country

Country
No. of Direct State interventions Distressed
banks failures Asset prot. Capital inj. Guaranteed loans mergers

Austria 10 0 0 6 0 0
Belgium 4 0 2 5 1 0
Cyprus 4 1 0 1 4 0
Estonia 2 0 0 0 0 0
Finland 3 0 0 0 0 0
France 27 0 0 6 0 3
Germany 16 0 3 11 1 7
Greece 12 4 0 27 16 22
Ireland 5 6 10 11 0 0
Italy 37 1 0 10 0 0
Latvia 2 0 0 0 0 0
Lithuania 3 0 0 0 0 0
Malta 2 0 0 0 0 0
Netherlands 5 0 0 2 0 0
Portugal 9 0 0 3 0 0
Slovakia 5 0 0 0 0 0
Slovenia 4 1 0 1 1 0
Spain 21 0 0 13 0 8

Total 171 13 15 96 23 40

underlying vulnerabilities two or even three years prior to distress, whereas market-
based signals tend to have a shorter forecast horizon (e.g., Bongini et al. (2002);
Milne (2014)). In the following list, we describe the indicators and their assumed
relation to distress.

• Capital adequacy (C): The equity-to-assets ratio (capital ratio) is used to
proxy the level of bank capitalization. Higher level of capital acts as a buffer
against financial losses protecting a bank’s solvency and is expected to reduce
the probability of a bank failure.

• Asset quality (A): This dimension is measured with return on assets (ROA),
reserves for non-performing loans as a share of non-performing assets, and
the share of loan loss provisions to total average loans. Overall, weaker asset
quality is expected to be positively associated with bank distress, whereas
exaggerated returns may also proxy ’excessive’ risk taking. A large share of
provisions for loan losses to total average loans is expected to increase the
probability of failure. However, the effect of reserves for loan losses as a share
of non-performing assets is potentially ambiguous, as higher reserves should
correspond to a higher cover for expected losses, but could also proxy for higher
expected losses.

• Management soundness (M): Even though being a challenging dimension to
measure, we use the cost-to-income ratio to proxy for the efficiency of firms
in minimizing costs while increasing profits, which is expected to reduce the
probability of a bank failure.
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• Earnings (E): To measure bank’s profitability, we use the return on equity
(ROE), which is expected to be negatively associated with bank distress.

• Liquidity (L): This dimension is measured with the share of interest expenses
to total liabilities, the deposits-to-funding ratio and the ratio of net short-term
borrowing to total liabilities. A higher deposits-to-funding ratio is expected
to be negatively associated with bank distress, as deposits are usually consid-
ered as a more stable funding source than the interbank market or securities
funding. Yet, large interest expenses to total liabilities and net short-term
borrowing to total liabilities are both expected to be positively related with a
bank failure.

• Sensitivity to market risk (S): This dimension is proxied for with the share of
trading income. The relation of this variable to bank distress could be positive
through a riskier business model (i.e., trading income is a volatile source of
earnings), whereas investment securities are more liquid than for instance loans
(i.e., allows banks to minimize fire sale losses in case of exogeneous shocks).

The next two categories of indicators are at the country level. Banking sector
indicators proxy for banking system imbalances. Though they are commonly cited
as key early-warning indicators for banking crises (e.g. Demirgüç-Kunt and Detra-
giache (1998, 2000); Kaminsky and Reinhart (1999); Borio and Lowe (2002); Lainà
et al. (2015)), they can also be assumed to impact the vulnerability of individual
banks. We proxy the size and rapid increases in banks’ balance sheets with to-
tal assets to GDP and growth in non-core liabilities; banking-system leverage with
debt-to-equity and loans-to-deposits ratios; securitization with debt securities to li-
abilities; and property booms with the ratio of mortgages to loans. We construct all
indicators with the ECB’s statistics on Balance Sheet Items (BSI) of the Monetary,
Financial Institutions and Markets (MFI). Finally, the third category of indicators
consists of macro-financial measures to identify macro-economic imbalances and con-
trol for conjunctural variation in asset prices and business cycles. Macro-economic
imbalances are controlled for with selected internal and external indicators from the
EU Macroeconomic Imbalance Procedure (MIP), such as private sector credit flow,
government debt, and international investment position (European Commission,
2012). In addition, we use asset prices (stock and house prices) and business cycle
indicators (real GDP growth and CPI inflation) to capture conjunctural variation.
Except house price indicators that are retrieved from the ECB, all macro-financial
indicators are sourced from Eurostat and Bloomberg. Table 4 presents a list of the
risk drivers used in the benchmark estimation, their definitions and the data sources.
Table 8 in the Appendix presents descriptive statistics of the risk drivers used in the
subsequent analysis. Statistical tests applied show that the data are non-normally
distributed and exhibit most often a positive skew with a leptokurtic distribution.

4 A European bank network with a distress model

For a large sample of European banks, this section presents the estimation results,
discusses provides illustrative case studies, as well as discusses the robustness anal-
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Table 4: List of explanatory variables, description and data sources

Variable type Name Source

C Total leverage ratio Bloomberg

A

Reserves for NPLs to Non-performing Assets Bloomberg
Bank-specific ROA Bloomberg

Loan Loss Provisions to Total Loans Bloomberg
balance sheet M Cost to Income Bloomberg

E ROE Bloomberg
variables

L

Interest expenses to Liabilities Bloomberg
Deposits to Liabilities Bloomberg
Net short-term borrowing to Liabilities Bloomberg

S Share of trading income to Revenue Bloomberg

Country-specific
Total assets to GDP ECB MFI Statistics
Non-core liability growth ECB MFI Statistics

banking sector
Debt to equity ECB MFI Statistics
Loans to deposits ECB MFI Statistics

variables
Debt securities to liabilities ECB MFI Statistics
Mortgages to loans ECB MFI Statistics

Real GDP growth Eurostat

Country-specific
Inflation Eurostat
Stock price growth Bloomberg

macro-financial
House price growth ECB MFI Statistics

variables

Long-term government bond yield Bloomberg
International investment position to GDP Eurostat/AlertMechanismReport
Government debt to GDP Eurostat/AlertMechanismReport
Private sector credit flow to GDP Eurostat/AlertMechanismReport
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Figure 2: Network density for the expanded (full) and the estimation sample of
banks.

ysis.

4.1 Results

The tail-dependence network, estimated as discussed in Section 2.1, offers informa-
tion about the extremal-dependence structure of listed European banks. Figure 2
shows the density of the network over the period 2007Q1-2014Q1, indicating what
proportion of all possible connections between the banks are actually realized. The
higher the density of the network the more links there are among the nodes (i.e.,
the banks). This measure brings information about such phenomena as the speed
at which information diffuses among the nodes. Given that the estimated connec-
tions represent high probabilities of simultaneous extreme events between banks,
high-density networks can amplify shocks. The blue line represents the density for
an expanded sample of European listed banks (243 banks) while the green line is
for the sample of banks used in the early warning model (171 banks). The banks’
sample for the early warning model is a subset of the whole sample of listed banks
because of the availability of their balance-sheet data and their size, as we only use
with a minimum of EUR 1bn in total assets during the period under consideration.

It is interesting to observe that, while the density is fairly small at about 4%, it
is varying over time. We can observe a strong increase in the number of extremal
dependencies during the 2 quarters preceding the failure of Lehman Brothers. The
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density for the expanded sample of listed banks hits its maximum in 2008Q3. If we
reduce the banks’ sample in the network to the 171 ones that have the balance sheet
data needed for the early-warning model, we can observe in Figure 2 that the links’
density was close to its highest levels also during the 6 quarters before 2008Q3. This
may be due to the fact that the reduced sample of banks that does not cover smaller
banks.

Table 5 presents summary statistics of the nodes’ degrees, which represent the
number of neighbours each bank has. We can see that the banks have on average 5.8
neighbours among the 170 banks we focus on. However, looking at the 50% quantile
we can see that half of the banks have up to 5 neighbours. This indicates that
there are few nodes with very high number of neighbours, which is confirmed by a
maximum degree of 31 and the 90% quantile at a level of 11. The summary statistics
for the eigenvector-centrality measure, which measures the broader influence of a
node in the network, are in line with those for the degree and confirm that the
network structure is far from being random.

Table 5: Summary statistics of network characteristics for the EWS sample, 171
banks

Degree Eigen-centrality

Mean 5.807 0.060
Std. dev 4.342 0.048
Minimum 0 0.000
Maximum 31 0.321
0.10 quantile 1 0.010
0.50 quantile 5 0.050
0.90 quantile 11 0.118

The estimation results of the early-warning models and the evaluation of the
models’ out-of-sample prediction capabilities are presented in Tables 6 and 7. In
addition to the benchmark model,8 Table 6 shows four model specifications that
account for possible contagion among banks. Two of the specifications include
variables to proxy contagion at the country-level (“Country Dummy” and “Coun-
try Share”), while two specifications include variables containing information from
the estimated tail-dependence network (“Network Dummy” and “Network Sum”).9

Given that the benchmark model is similar to that in Betz et al. (2014), and as the
purpose of the paper is to analyse whether accounting for potential contagion could
improve the forecast ability of the early-warning model, we focus on presenting the
results concerning the country and network contagion variables.

Compared to the benchmark case, where only one estimation of the Betz et
al. (2014) early-warning model with country fixed effects is performed for signaling
vulnerable banks, the two-step estimation framework used to introduce network-
based contagion effects improves significantly the results. The model with “Country

8The benchmark model is based on Betz et al. (2014) augmented with country-fixed effects and
an updated dataset.

9See Section 2.3 for more information how these variables are constructed.
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Share” contagion has good in-sample fit with the highest R-squared (0.07), the
model with “Network Sum” has the best out-of-sample results with the highest
relative usefulness (0.64), while the highest AUC is with the specification “Network
Dummy” (0.90). Even though the magnitude of the improvement in AUC for the
two models with network contagion variables is modest, it is statistically significant.
All country and network contagion coefficients are statistically significant and have
the expected sign: exposure to contagion from vulnerable neighbours increases the
vulnerability probabilities of banks. The two network contagion coefficients also have
the highest magnitude when compared to the country contagion ones. The rest of
the explanatory variables used in the benchmark model have coefficients with the
expected sign that generally keep their significance levels after adding the contagion
variables. Among the CAMELS variables, banks’ leverage ratio (C), return on
assets (A), cost-to-income ratio (M), the ratio of net short-term borrowing to total
liabilities (L), and the share of trading income (S) have highly statistically significant
coefficients. The share of trading income has a negative sign, meaning that the
liquidity of investment securities reduces bank vulnerability risk by allowing it to
minimize fire sale losses in case of a changing macro-financial environment. Among
the country-specific indicators, the ratio of the size of the banking system’s balance
sheet to GDP, its leverage ratio and the securitization ratio are the most important
factors, having statistically significant coefficients with high magnitudes. In the case
of country-based contagion, the improvement in the out-of-sample performance is
rather small and not significant.

Regarding the out-of-sample performance, Table 7 summarises the AUC and rel-
ative usefulness (Ur) measures across different model specifications. As a reminder,
the Ur represents the proportion of usefulness that a policymaker would obtain com-
pared to a perfectly performing model. Given the distribution of pre-distress events
and tranquil periods, we focus on the high-end range of policymaker’s preference
parameter µ. The relative usefulness measure in Table 7 is computed using a poli-
cymaker preference of 0.85,10 as an attempt to build an early-warning model with
imbalanced data that necessitates a policymaker to be more concerned about the
rare distress cases, which translates into having a preference to predict distress.

In the case where the number of vulnerable neighbours for each bank is intro-
duced in the model, represented by “Network Sum”, the relative usefulness measure
jumps from 0.58 in the benchmark model to 0.64. This improvement comes from
better performance both in terms of missing less crises (reduced false-negative rate)
and giving fewer false signals (reduced false-positive rate). When the contagion vari-
ables are built using the location of banks’ incorporation (i.e., “Country Dummy”
and “Country Share”), there is almost no change in the results compared to the
benchmark case. This suggests that intra-country contagion is already accounted
for in the early-warning model through country-level indicators and country-fixed
effects, as well as highlights the need to account for cross-border contagion.

Finally, we also consider a second benchmark model, called “2est Benchmark”,
where the variable added to the second part of the estimation simply uses the signals
delivered by the early-warning model in the first part, without any type of contagion.

10Other values for the policymaker’s preference parameter have also been considered and are
discussed in the robustness analysis in Section 4.3.
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Table 7: Out-of-sample performance of the early warning model for different speci-
fications, 2007Q1-2012Q3, µ=0.85

Model AUC Ur FN rate FP rate TN rate TP rate

1est Benchmark 0.8941 0.5800 0.1799 0.2095 0.7905 0.8201
2est Benchmark 0.8944 0.5770 0.1799 0.2125 0.7875 0.8201
Country Dummy 0.8933 0.5807 0.1691 0.2214 0.7786 0.8309
Country Share 0.8959 0.5904 0.1799 0.1991 0.8009 0.8201
Network Dummy 0.8992** 0.6060 0.1367 0.2340 0.7660 0.8633
Network Sum 0.8986* 0.6444 0.1655 0.1620 0.8380 0.8345
Network Dummy w/Lag 0.8966 0.6030 0.1367 0.2370 0.7630 0.8633
Network Sum w/Lag 0.8974 0.6478 0.1835 0.1374 0.8626 0.8165

This table summarises and compares the area under the ROC curve (AUC) and relative
usefulness (Ur) goodness of fit measures across different model specifications, for policymakers’
preference parameter µ=0.85. Model performance is evaluated out-of-sample, for the period
2007Q1 - 2012Q3. Detailed values for the false negative, false positive rates and their
counterparts are also provided. Significance codes for differences of AUC measures between
contagion models and the single estimation benchmark model are: 0.01 ’***’; 0.05 ’**’; 0.1 ’*’.

While not being an economically or statistically meaningful estimation strategy,
this enables us to assess whether the improvement in performance descends from
including an additional variable to the model or whether it is indeed related to
contagion effects. We can see that simply including an additional variable of model
signals to the second step of the estimation does not improve model performance.
The AUC for the two types of benchmark models are not statistically different from
each other. This confirms that contagion effects are indeed the factor that drives
our results. The last two lines in Table 7 show the results for two robustness models
that use one-quarter lagged networks for constructing the ”Network dummy” and
”Network Sum” contagion variables. The numbers indicate that using the previous
quarter network when accounting for contagion does not bring any important change
in the results.

To sum up, the specifications with country and network contagion variables out-
perform the benchmark model both in their in-sample fit and their out-of-sample
forecast performance. Overall, the models with tail dependencies have the highest
in-sample fit and out-of-sample forecast performance given their consistently high-
est AUC measures that in most cases are statistically significantly larger than those
of the benchmark model. These results give a direct support for proxying for in-
terconnections or contagion beyond focusing on individual banks when building an
early-warning model for bank failures.

4.2 Case studies

In order to illustrate the basic idea of the early-warning models incorporating tail-
dependence measures as well as to show its performance, selected case studies of the
model predictions are displayed in Figures 3-6. Figures 3 (Dexia) and 5 (National
Bank of Greece) show the predicted distress probabilities for the selected banks when
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the full benchmark model (using bank-specific and country-level banking sector and
macro-financial vulnerabilities) is estimated without the tail-dependence network
or contagion dummies. The figures show the out-of-sample predicted (absolute)
probabilities for a bank to be in a pre-distress period (vulnerable state), during
which a distress event could occur in the next eight quarters. Moreover, the figures
also show the percentile distress probabilities, which illustrate how high the predicted
probabilities are compared to the predicted probabilities in the sample. Finally, in
the figures the distress probability lines are shaded with grey when the predicted
probabilities are above the time-varying optimal threshold, i.e. when the model
issues an early-warning signal. As can be seen from the figures, the benchmark
model seems to perform rather well for selected cases in predicting individual bank
failures out-of-sample.

Absolute distress probabilities

Early warning signals

DEXIA SA

2007 Q1 2007 Q4 2008 Q3 2009 Q2 2010 Q1 2010 Q4 2011 Q3 2012 Q2

0.0

0.2

0.4

0.6

0.8

1.0

Pre−distress event Distress event

Figure 3: Predicted probability for Dexia, 2007Q1-2012Q13.

Figures 4 (Dexia) and 6 (National Bank of Greece) show the model predictions for
the individual banks as well as for their estimated neighbours in the tail-depedence
network. In this case, the benchmark model is augmented with ”Network Sum”.
In other words, the model takes into account potential signals from its estimated
neighbourhood when assessing the distress probability of a bank i and whether the
probability is considered as an early-warning signal or not (the optimal threshold is
calibrated accordingly). As can be seen from the figures, in both example cases, there
are bank distress events (marked with filled dots) in the estimated neighbourhood of
the banks. Moreover, the model is in most cases able to predict the distress events
in advance. This points to the regularity that neighboring banks to a distressed
bank have also experienced distress. Further, the figures also clearly illustrate the
high interconnectedness and complexity of the European banking sector that goes
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Figure 4: Predicted probability for Dexia and its neighbours, 2007Q1-2012Q13.
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Figure 5: Predicted probability for National Bank of Greece, 2007Q1-2012Q13.
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Figure 6: Predicted probability for National Bank of Greece and its neighbours,
2007Q1-2012Q13.

beyond national borders and thus motivates the use of proxies for interconnections
and contagion, such as the tail-dependence network presented in this paper.

4.3 Robustness analysis

The robustness of the results has been assessed with a wide range of different tests.
The results of the robustness evaluations can be found in Table 9 in the appendix.11.
In all cases, the importance of proxying for interconnections or contagion beyond
focusing on the bank-specific factors is still valid.

First, we test a number of different early-warning specifications. To start with,
the analysis is performed for three different policymaker’s preference parameters
µ=0.80, µ=0.85 and µ=0.90. Given the distribution of pre-distress events and tran-
quil periods, we focus on the high-end range of policymaker’s preference µ. From
Table 9, it appears that the model performs very well for all three parameter values.
In terms of the relative usefulness, the best performing model is for µ = 0.80. The
results are qualitatively the same for all three parameter values (i.e. the importance
of proxying for interconnections is strongly supported). The magnitude of the rela-
tive Usefulness changes as expected: lower µ values greatly reduce the false positive
rate, and implicitly the costs related to false alarms, which is for some cases done
at the expense of missing crises. Moreover, these results are also robust to different
model specifications and changes in forecast horizons.

11Due to space constraints the estimated coefficients of the robustness analysis are not shown in
the Appendix. However, the results are available upon request.
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Second, we consider a possible second benchmark model, where we compute the
performance of the signaling model when the extra variable added to the second step
of the estimation simply uses the signals of the initial estimation. That is, the second
step is estimated but with no information of contagion. In this way, we are able
to assess whether the performance improvement descends from simply including an
additional variable or whether it is actually related to contagion effects. This model
is called “2est Benchmark” in Table 9. We can see for all robustness estimations that
simply including one additional variable with initial distress signals to the second
estimation step does not improve model performance. This further confirms that
contagion effects among banks are indeed the driver behind our results.

Moreover, we tested whether the results are robust for alterations of the esti-
mated tail-dependence network. As can be seen in the last two rows of the panels
in Table 9, we tested whether lagging network relations by one quarter improves
model performance, but could not find an improvement compared to the no-lag
case. Further, in the third part of Table 9 we also test whether using actual bank
distress events in addition to predicted distress probabilities would improve model
performance. The information of actual distress events slightly improved the model
predictive performance but this difference is not statistically significant.

We also test the convergence of the predicted distress probabilities for the out-
of-sample quarters by repeating the third and fourth steps of the empirical strategy
presented in Section 2.3. This amounts to re-computing the network-based conta-
gion variables and re-estimating the augmented logit model until the change in the
predicted distress probabilities is less than one percentage point.12 We perform this
convergence test in order to avoid possible inconsistencies between the predicted
distress probabilities of the different estimation steps. The results concerning the
convergence for network-based contagion models, with policymaker’s preference pa-
rameter µ of 0.85, are presented in the last part of Table 9. We can see that the
results are very similar to the simpler two estimation procedure, with a slightly
smaller magnitude. This confirms that only one estimation of the contagion aug-
mented early-warning model should be enough to obtain stable signals and supports
the robustness of our previous results.

Finally, among other tests13, we assessed whether the results would change if a
persistence condition would be applied to the estimated dependence network (i.e.,
estimated network relation has persisted for 2 quarters instead of a concurrent re-
lation). The results are qualitatively similar, but the model performance is slightly
poorer. Likewise, we have also tested various z-scores for deriving binary network
links without significant changes in results.

5 Conclusion

Building on the literature on systemic risk and financial contagion, the paper in-
troduced estimated network linkages into an early-warning model to predict bank

12The country-based contagion model using the Country Dummy does not require the re-
estimation of the augmented early-warning model.

13We do not report herein all the results of the robustness tests but they are available upon
request.
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distress. The approach applied in this paper estimates tail-dependence networks
(Poon et al., 2004) from equity returns of 171 European banks in 1999Q1-2012Q3
and combines that with a bank-level early-warning model (Betz et al., 2014). Beyond
standard bank-level risk drivers and macro-financial indicators, a tail-dependence
network provides additional information about market’s view on bank interconnect-
edness in situations of elevated financial stress. Thus, it can provide information
of potentially vulnerable banks following an early-warning signal or a bank failure,
and the potential for financial contagion and a systemic banking crisis.

The paper finds that the early warning models including estimated tail depen-
dencies consistently outperform the benchmark models, which cover solely vulner-
abilities coming from bank-specific, sector-level and macro-financial imbalances in
order to predict bank distress events. These results highlight the importance of
including measures of interconnectedness and proxies for contagion when building
early-warning models. From a policy perspective, they underline the necessity for
including information on the structure of the banking system to complement macro
and micro-prudential analysis of individual bank’s risk. Overall, the paper provides
early steps toward a unified representation of cyclical and cross-sectional dimensions
of systemic risk and contagion risk.

For future work, it is worth noting the general nature of the framework for com-
bining networks and distress models. While this study is at the bank level, the same
procedures would equally well apply at the country level or for another industry,
such as insurers and other financial institutions. Another line of future work could
focus on the use of the provided framework with a range of interconnectedness mea-
sures. In contrast to the classification task performed by early-warning models, for
which ”ground truth” exists and ex-post evaluations are possible, bank networks and
interconnectedness measures do not have similar outcome data to steer modeling.
Hence, the framework presented in this paper provides an ideal setting for testing
the extent to which interconnectedness measures are proxying for the true channel
of distress contagion.
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Table 9: Robustness evaluation of the early-warning models, out-of-sample 2007Q1-
2012Q3: sensitivity to µ and use of historical distresses

Model AUC Ur FN rate FP rate TN rate TP rate

µ=0.80

1est Benchmark 0.8941 0.6295 0.2230 0.1218 0.8782 0.7770
2est Benchmark 0.8948 0.6286 0.2230 0.1226 0.8774 0.7770
Country Dummy 0.8951 0.6277 0.2158 0.1293 0.8707 0.7842
Country Share 0.8990*** 0.6250 0.2194 0.1285 0.8715 0.7806
Network Dummy 0.8985 0.6214 0.1799 0.1642 0.8358 0.8201
Network Sum 0.9009** 0.6610 0.1906 0.1226 0.8774 0.8094
Network Dummy w/Lag 0.8974 0.6259 0.1799 0.1605 0.8395 0.8201
Network Sum w/Lag 0.9009** 0.6655 0.1978 0.1129 0.8871 0.8022

µ=0.90

1est Benchmark 0.8941 0.4978 0.1079 0.3016 0.6984 0.8921
2est Benchmark 0.8930 0.4933 0.1223 0.2793 0.7207 0.8777
Country Dummy 0.8936 0.4733 0.1259 0.2927 0.7073 0.8741
Country Share 0.8974** 0.4970 0.1187 0.2823 0.7177 0.8813
Network Dummy 0.8972** 0.5022 0.1043 0.3039 0.6961 0.8957
Network Sum 0.8978 0.5208 0.1079 0.2786 0.7214 0.8921
Network Dummy w/Lag 0.8961* 0.5022 0.1079 0.2972 0.7028 0.8921
Network Sum w/Lag 0.8969 0.5260 0.1151 0.2600 0.7400 0.8849

µ=0.85, with historical and estimated distresses

1est Benchmark 0.8941 0.5800 0.1799 0.2095 0.7905 0.8201
2est Benchmark 0.8944 0.5770 0.1799 0.2125 0.7875 0.8201
Country Dummy 0.8942 0.5879 0.1655 0.2184 0.7816 0.8345
Country Share 0.8966* 0.5877 0.1619 0.2229 0.7771 0.8381
Network Dummy 0.8973 0.6320 0.1475 0.1954 0.8046 0.8525
Network Sum 0.8974 0.6454 0.1691 0.1568 0.8432 0.8309
Network Dummy w/Lag 0.8973 0.6169 0.1547 0.2021 0.7979 0.8453
Network Sum w/Lag 0.8970 0.6399 0.1763 0.1538 0.8462 0.8237

µ=0.85, with convergence of out-of-sample distress signals

1est Benchmark 0.8941 0.5800 0.1799 0.2095 0.7905 0.8201
2est Benchmark 0.8944 0.5770 0.1799 0.2125 0.7875 0.8201
Network Dummy 0.8980* 0.5998 0.1331 0.2444 0.7556 0.8669
Network Sum 0.8985* 0.6308 0.1835 0.1545 0.8455 0.8165
Network Dummy w/Lag 0.8969 0.5830 0.1475 0.2444 0.7556 0.8525
Network Sum w/Lag 0.8970 0.6230 0.1793 0.1838 0.8207 0.8162

This table presents the performance of different early-warning model specifications. The analysis
is performed for three different policymaker’s preference parameters µ=0.80, µ=0.85 and µ=0.90.
Results are presented for the area under the ROC curve (AUC) and relative usefulness (Ur)
goodness of fit measures. Model performance is evaluated out-of-sample, for the period 2007Q1 -
2012Q3. Detailed values for the false negative (FN), false positive (FP) rates and their
counterparts are also provided. Significance codes for differences of AUC measures between
contagion models and the single estimation benchmark model are: 0.01 ’***’; 0.05 ’**’; 0.1 ’*’.
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